50 research outputs found

    The incidence and risk factors for new onset atrial fibrillation in the PROSPER study

    Get PDF
    Aims Atrial fibrillation/flutter (AF) is the most common arrhythmia in older people. It associates with reduced exercise capacity, increased risk of stroke, and mortality. We aimed to determine retrospectively whether pravastatin reduces the incidence of AF and whether any electrocardiographic measures or clinical conditions might be risk factors for its development. Methods and results The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) was a randomized, double-blind controlled trial that recruited 5804 individuals aged 70-82 years with a history of, or risk factors for, vascular disease. A total of 2891 were allocated to pravastatin and 2913 to placebo; mean follow-up was 3.2 years. Electrocardiograms (ECGs), which were recorded at baseline, annually thereafter, and at run-out, were processed by computer and reviewed manually. In all, 264 of 2912 (9.1%) of the placebo group and 283 of 2888 (9.8%) of the pravastatin-treated group developed AF [hazard ratio 1.08 (0.92,1.28), P = 0.35)]. Multivariate analysis showed that PR and QTc intervals, age, left ventricular hypertrophy, and ST-T abnormalities were related to development of AF after adjustment for many variables including alcohol consumption, which itself was univariately predictive of developing AF. Previous myocardial infarction on the ECG was not a risk factor. A history of vascular disease was strongly linked with developing AF but not diabetes and hypertension. Conclusion Pravastatin does not reduce the incidence of AF in older people at risk of vascular disease, at least in the short-medium term. Risk factors for AF include older age, prolongation of PR or QTc intervals, left ventricular hypertrophy, and ST-T abnormalities on the EC

    Cardiovascular magnetic resonance in systemic hypertension

    Get PDF
    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension
    corecore